

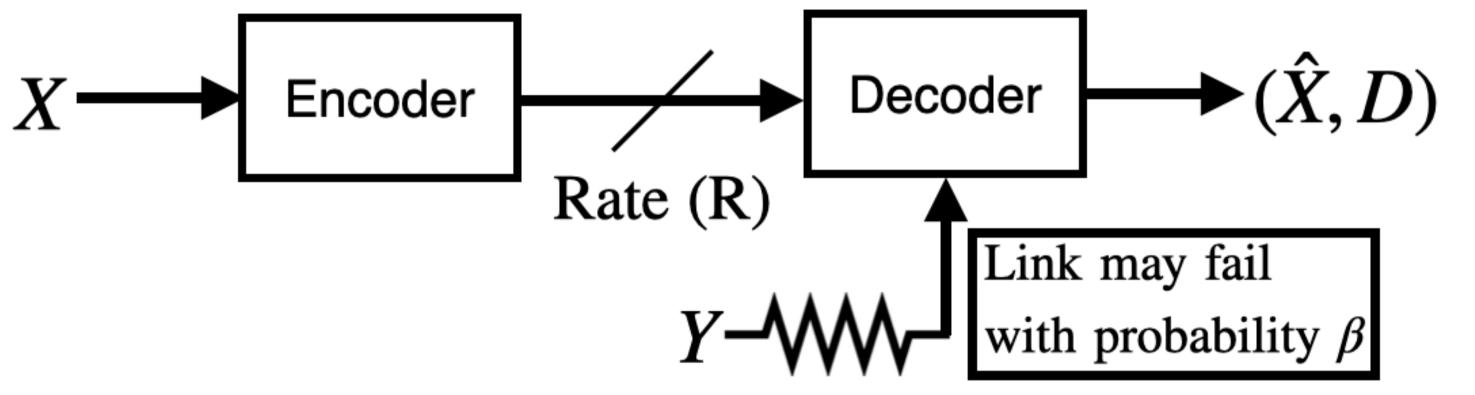
Robust Distributed Compression with Learned Heegard – Berger Scheme Eyyüp Taşçı*, Ezgi Özyılkan⁺, Kubilay Ülger⁺, Elza Erkip⁺

*Bogazici University, [†]New York University

NYU

- Overview

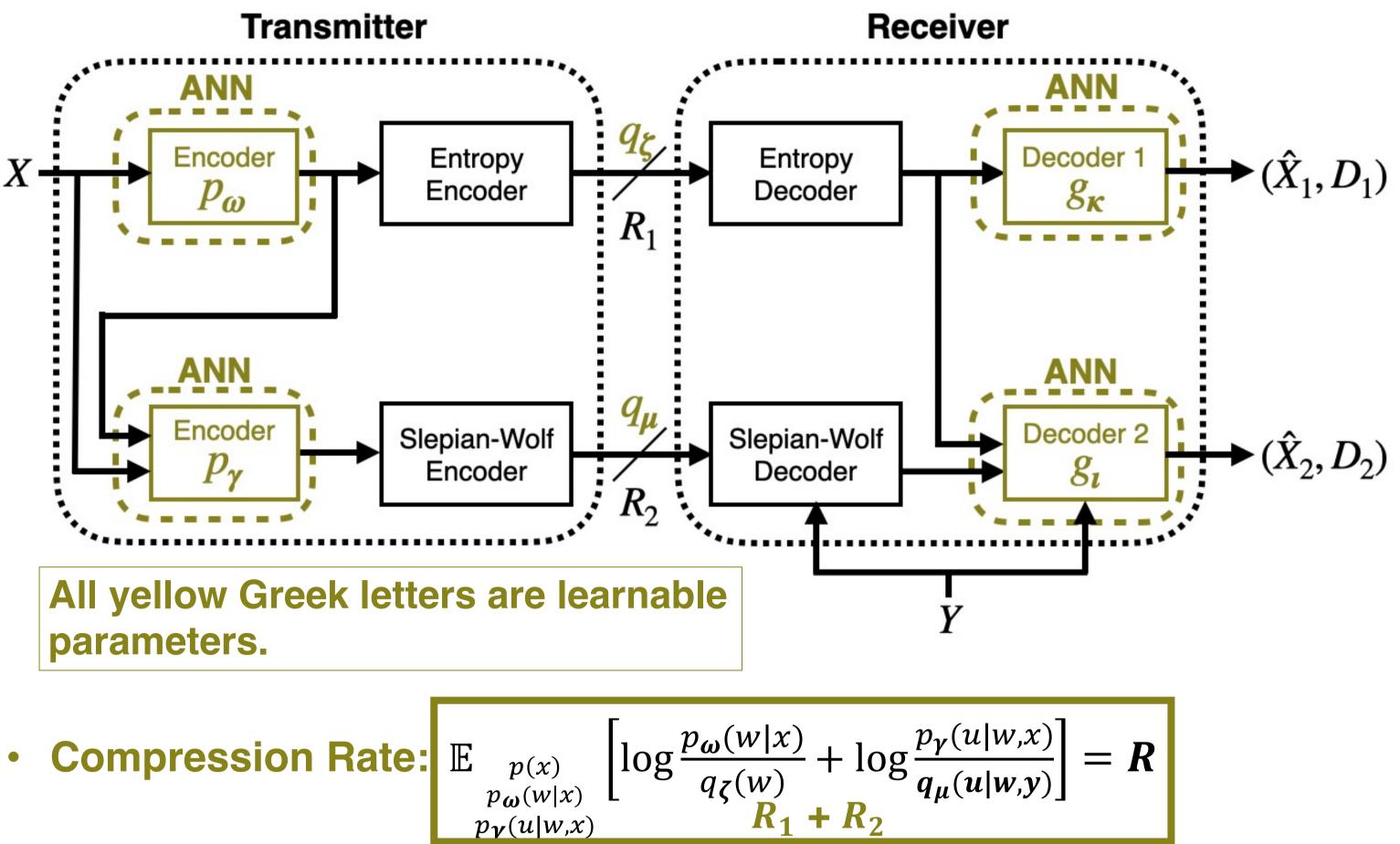
Distributed compression can improve transmission rates in practical applications such as sensor networks and federated learning by leveraging side information, compared to point-to-point compression.



What happens if the side information fails to reach to the decoder?

3) Conditional Model

Separate encoders where W and U are separate auxiliary variables. Moreover, entropy model is **conditioned on side information**.



What if the side information may be absent?

 \succ Heegard—Berger (1985) gave theoretical asymptotic limits, but constructive codes are missing in the literature.

The R-D function for X with side information Y may be missing is:

 $R(\mathcal{D}) = \min_{p(w,u|x)} (I(X;W) + I(X;U|Y,W)),$

under weighted distortion constraint Output of decoder Uninformed when side information decoder output $\mathbb{E}[\beta d(X, \hat{X}_1) + (1 - \beta) d(X, \hat{X}_2)] \leq \mathcal{D}.$ with distortion: D_1 is **missing**. Output of decoder Informed decoder output Achievability relies on random binning arguments. with distortion: D_2 is present.

• The universal approximation capability of neural networks enables the design of **one-shot distributed neural compressors** for real-life applications. However, ensuring the robustness of neural compressors against link failures is essential for their practical deployments.

In our work, we

- single-shot learned neural compressor for the > propose a Heegard – Berger setup,
- demonstrate the grouping behaviour of compressors akin to the 'random binning' arguments of asymptotic results.

For All Three Models:

- The encoder outputs are discrete.
- There is one **informed** and one **uninformed** decoder. The weighted distortion:

 $\mathcal{D} = \mathbb{E}_{p(x)}[\beta d(X, \hat{X}_1) + (1 - \beta)\beta d(X, \hat{X}_2)]$

Lagrangian as training loss: $\mathfrak{L} = \mathbf{R} + \lambda \cdot \mathbf{D}$

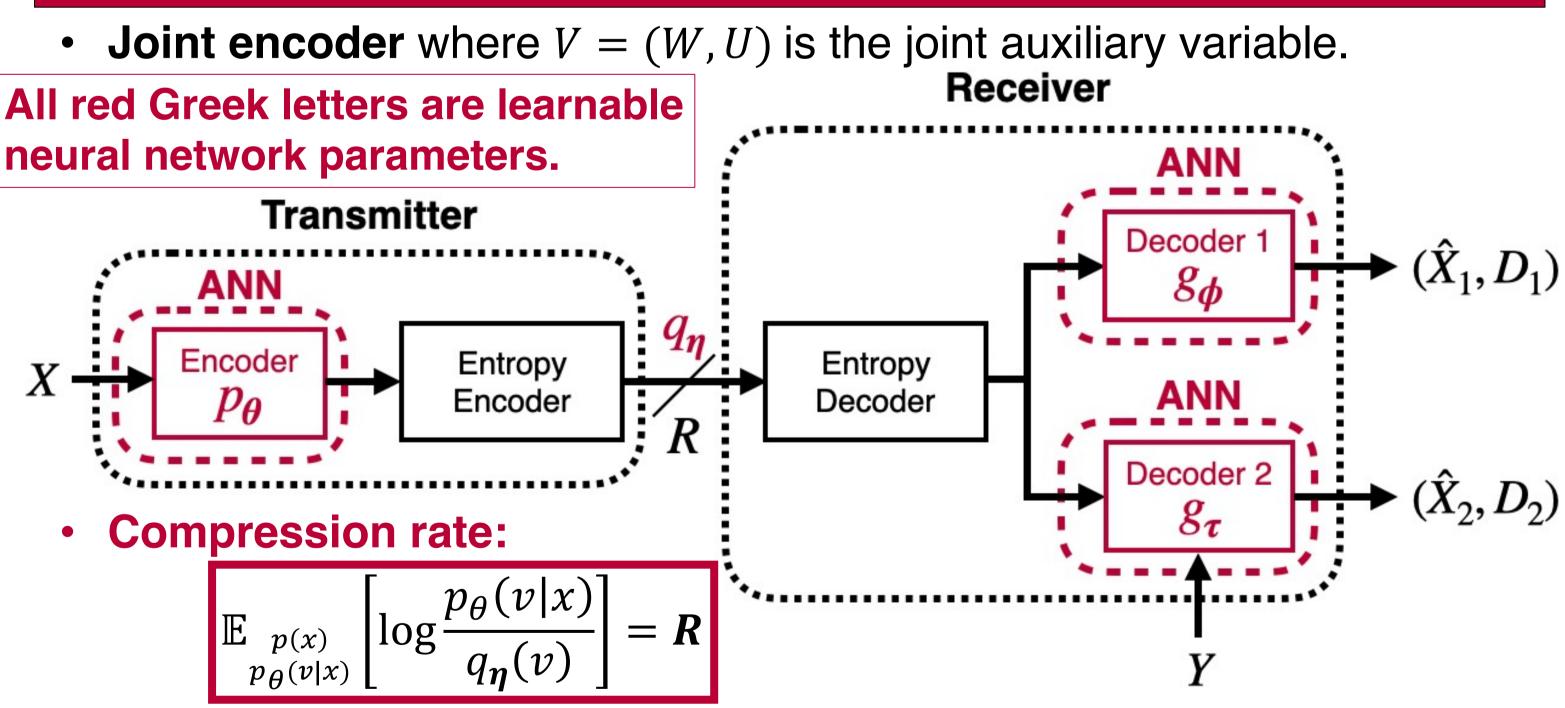
III - Neural Compressors are Robust

We choose the X and Y to be i.i.d. Gaussian sources with quadratic distortion measure since their R-D curves are well-studied, allowing us to

II – Operational Neural Schemes

We present three unique constructive solutions to Heegard—Berger problem expanding on the work from Ozyilkan et al. 2023.

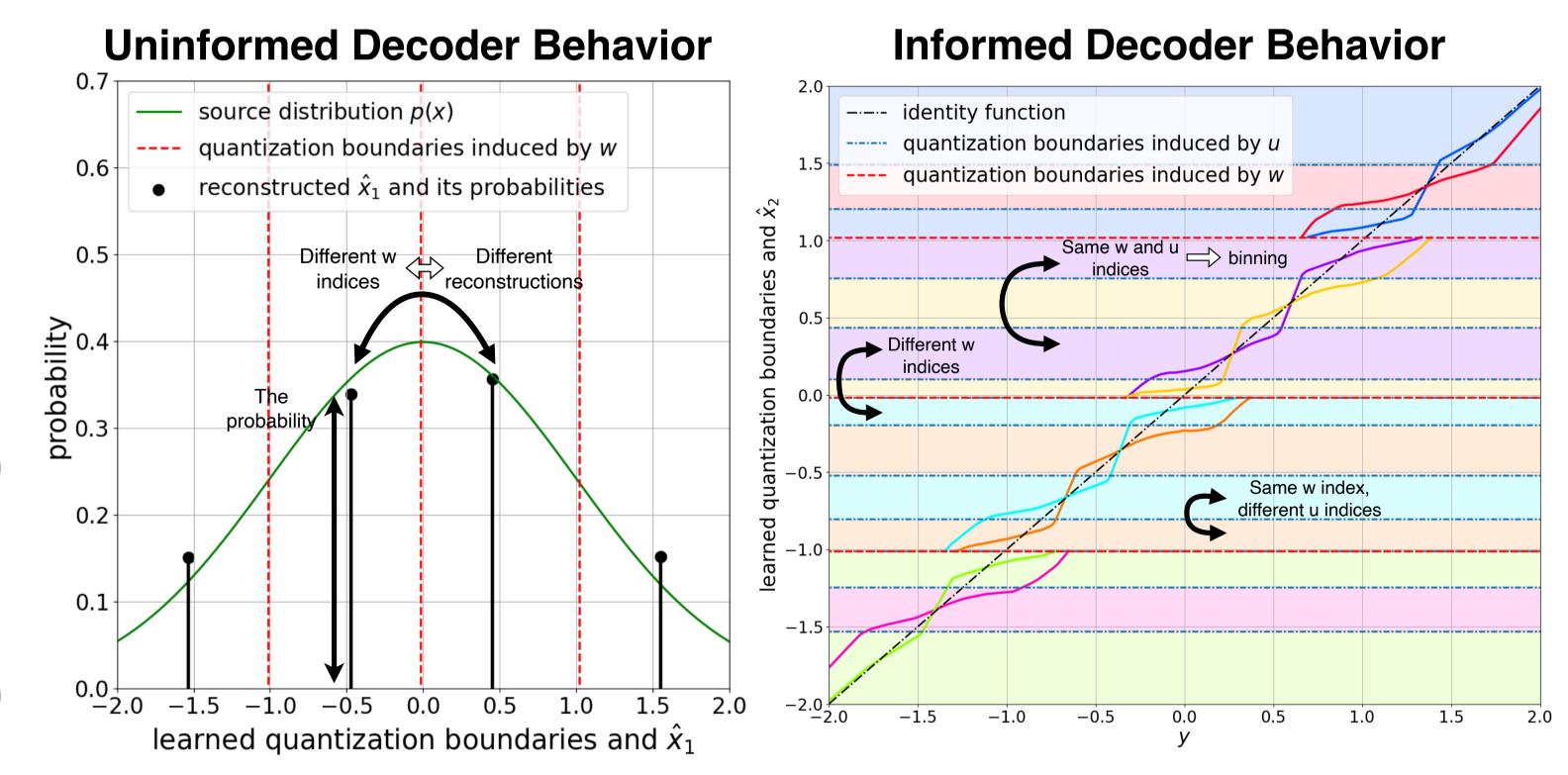
1) Joint Model



2) Marginal Model

Separate encoders where W and U are separate auxiliary variables.

assess how close we get to R-D curves. For Y = X + N with $X \sim N(0, 1)$ and $X \sim N(0, 10^{-2})$ and $\beta = 0.2$, marginal model behaviour is as follows:



The colors between each boundary represent a unique (w, u) pair. Solid lines is the output of the decoding function, each representing a different pair of (w, u) as inputs within its respective quantization region. Grouping behavior is evident.

