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 What happens if the side information fails to reach to the decoder?
What if the side information may be absent? | :

» Heegard—Berger (1985) gave theoretical asymptotic limits, but e e mmmm e S '
constructive codes are missing in the literature. All yellow Greek letters are learnable
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The R-D function for X with side information Y may be missing is: parameters.
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* The encoder outputs are discrete.

* The universal approximation capability of neural networks enables the
design of one-shot distributed neural compressors for real-life
applications. However, ensuring the robustness of neural compressors . A
against link failures is essential for their practical deployments. D = Ep[Bd(X, X1) + (1 = B)Bd(X, X;)]

. Lagrangian as trainingloss: = R+ A1-D
» propose a single-shot learned neural compressor for the

Heegard—Berger setup, lll - Neural Compressors are Robust

» demonstrate the grouping behaviour of compressors akin to the| . we choose the X and Y to be i.i.d. Gaussian sources with quadratic
‘random binning’ arguments of asymptotic results. distortion measure since their R-D curves are well-studied, allowing us to

* There is one informed and one uninformed decoder. The weighted
distortion:

In our work, we

: assess how close we get to R-D curves. For Y =X + N with X~N(0,1)
Il — Operatlonal Neural Schemes and X~N(0,1074) and f = 0.2, marginal model behaviour is as follows:
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pair of (w,u) as inputs within its respective quantization region. Grouping
2) Marginal Model behavior is evident.

« Separate encoders where W and U are separate auxiliary variables.
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All blue Greek letters are learnable parameters. Y The expected distortion achieved by two decoders is depicted in the left

_ Doy (W) Do (u|w.x) panel, while the distortion attained by the informed decoder alone is
» Compression Rate:|E [108 ;’((W) + log czyw(ulw) = depicted in the right panel. Right panel shows the trade-off between
pi“(’ffvlvﬁ)@ R, +R, system robustness and compression efficiency.



