
• Distributed compression can improve transmission rates in practical 
applications such as sensor networks and federated learning by 
leveraging side information, compared to point-to-point compression.

• What happens if the side information fails to reach to the decoder? 
What if the side information may be absent?
Ø Heegard—Berger (1985) gave theoretical asymptotic limits, but 

constructive codes are missing in the literature.

For All Three Models:

• The encoder outputs are discrete.

• There is one informed and one uninformed decoder. The weighted 
distortion:
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• Lagrangian as training loss: 𝔏 = 𝑹 + 𝜆 ⋅ 𝓓

• Joint encoder where 𝑉 = (𝑊,𝑈)	is the joint auxiliary variable.

 
• Compression rate: 
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II – Operational Neural Schemes

• Separate encoders where 𝑊	and 𝑈 are separate auxiliary variables. 

• Compression Rate: 𝔼 ! "
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We present three unique constructive solutions to Heegard—Berger 
problem expanding on the work from Ozyilkan et al. 2023.

• Separate encoders where 𝑊	and 𝑈 are separate auxiliary variables. 
Moreover, entropy model is conditioned on side information. 
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The colors between each boundary represent a unique (𝑤, 𝑢) pair. Solid 
lines is the output of the decoding function, each representing a different 
pair of (𝑤, 𝑢) as inputs within its respective quantization region. Grouping 
behavior is evident. 

The expected distortion achieved by two decoders is depicted in the left 
panel, while the distortion attained by the informed decoder alone is 
depicted in the right panel. Right panel shows the trade-off between 
system robustness and compression efficiency.

1) Joint Model

III - Neural Compressors are Robust

2) Marginal Model

All red Greek letters are learnable 
neural network parameters.

All blue Greek letters are learnable parameters.

𝑹𝟏 + 𝑹𝟐 

3) Conditional Model

All yellow Greek letters are learnable 
parameters.

𝑹𝟏 + 𝑹𝟐 

• We choose the 𝑋 and 𝑌 to be i.i.d. Gaussian sources with quadratic 
distortion measure since their R-D curves are well-studied, allowing us to 
assess how close we get to R-D curves. For 𝑌 = 𝑋	 + 	𝑁 with 𝑋~𝑁(0, 1) 
and 𝑋~𝑁 0, 102$  and	𝛽 = 0.2	, marginal model behaviour is as follows:
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• We compare the R-D performances with theoretical limits. For 𝑌 = 𝑋	 +
	𝑁 with 𝑋~𝑁(0, 1) and 𝑋~𝑁 0, 102#  and	𝛽 = 0.01, R-D curves are:

Uninformed Decoder Behavior Informed Decoder Behavior

In our work, we
Ø propose a single-shot learned neural compressor for the 

Heegard—Berger setup,
Ø demonstrate the grouping behaviour of compressors akin to the 

‘random binning’ arguments of asymptotic results.

• The universal approximation capability of neural networks enables the 
design of one-shot distributed neural compressors for real-life 
applications. However, ensuring the robustness of neural compressors 
against link failures is essential for their practical deployments.
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