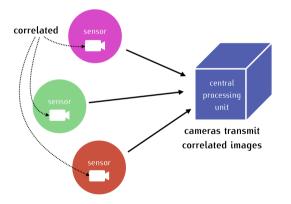
One-Shot Wyner–Ziv Compression of a Uniform Source

Oğuzhan Kubilay Ülger, Elza Erkip

New York University

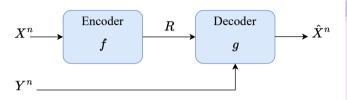
2024 IEEE International Symposium on Information Theory $\ensuremath{7/10/2024}$

Distributed Compression



- Distributed sensor network such as a distributed camera array.
- Correlated observations transmitted to a central processing unit.
- How can the sensors exploit this correlation to send their data efficiently?

Compression with Side Information



Special case by Wyner and Ziv (1976):

- Compress X^n under some distortion constraint.
- Correlated side information is available only at the decoder:
- They characterize the rate-distortion trade-off in the asymptotic setting.
- Asymptotic methods do not directly apply to one-shot!

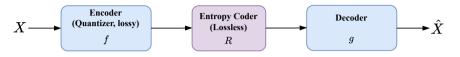
Rate Distortion Function

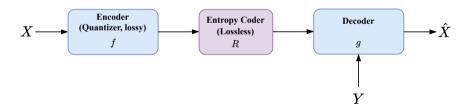
$$R(\Delta) = \min I(X;U) - I(Y;U)$$

where minimization is over all p(u|x) and $g(U,Y) = \hat{X}$ such that $\mathbb{E}[d(X,\hat{X})] \leq D.$

K. Ulger

One-Shot Compression with Side Information

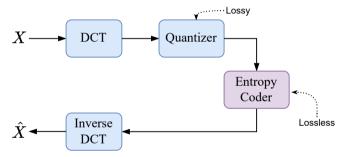




- Popular approach for **point-to-point** (no side information) setting.
- Quantizer (encoder) followed by an entropy coder (lossless, variable length such One-Shot Wyner-Ziv Compression of a Uniform Source 7/10/2024 3 / 20

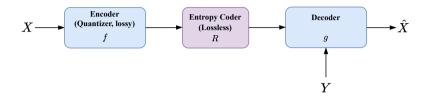
Example: JPEG

• Classical image compression: JPEG



- Also popular method for learned compressors.
- In our problem, we have to include the side information!

ECSQ with Side Information

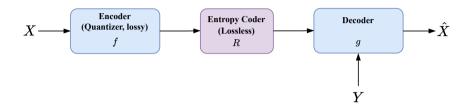


- Source X, side information Y and distortion metric $d(x, \hat{x})$.
- Encoder $f: \mathcal{X} \to \mathbb{N}$, decoder $g: \mathbb{N} \times \mathcal{Y} \to \hat{\mathcal{X}}$.
- The entropy and distortion of this encoder-decoder pair with $\hat{X} = g(f(X), Y)$:

$$H(f) = -\sum_{i} \mathbb{P}[f(X) = i] \log(\mathbb{P}[f(X) = i])$$
$$D_{SI}(f,g) = \mathbb{E}[d(X, \hat{X})]$$

5 / 20

Side Information Entropy–Distortion Functions



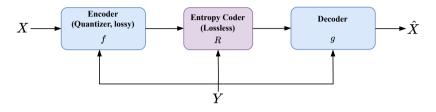
• Entropy-distortion function with SI is given by:

$$H_{SI}(\Delta) = \inf_f H(f)$$

• Infimum is taken over all encoders f such that there exists a decoder g with $D_{SI}(f,g) \leq \Delta.$

6 / 20

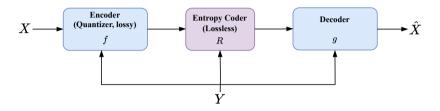
Conditional ECSQ



- Consider the case where Y is also available at the encoder. We refer to this case as conditional ECSQ.
- Encoder $f: \mathcal{X} \times \mathcal{Y} \to \mathbb{N}$, decoder $g: \mathbb{N} \times \mathcal{Y} \to \hat{\mathcal{X}}$.
- The conditional entropy and distortion of (f,g) with $\hat{X} = g(f(X,Y),Y)$:

$$H(f|Y) = \mathbb{E}\left[-\sum_{i} \mathbb{P}[f(X) = i|Y = y] \log(\mathbb{P}[f(X) = i|Y = y])\right]$$
$$D_{C}(f,g) = \mathbb{E}[d(X,\hat{X})]$$

Conditional Entropy–Distortion Function



• Similar to the previous case, we define the **conditional entropy-distortion function** as:

$$H_C(\Delta) = \inf_f H(f|Y)$$

• The infimum is taken over all encoders f such that there exists a decoder g with $D_C(f,g) \leq \Delta.$

Our Goal

We wish to characterize $H_{SI}(\Delta)$ and $H_C(\Delta)$.

• We consider a uniform source on the unit interval [0,1].

Motivation

- Recent interest in bench-marking performance of neural compressors on processes generated by uniform sources^{1,2}.
- Emergence of neural compressors in decoder-only side information settings³.
- Even without SI, closed form expressions are only known for a limited source distributions.

¹A. B. Wagner and J. Balle, "Neural networks optimally compress the sawbridge," in 2021 Data Compression Conference (DCC). IEEE, 2021.

²S. Bhadane, A. B. Wagner, and J. Balle, "Do neural networks compress manifolds optimally?" in 2022 IEEE Information Theory Workshop (ITW). IEEE, 2022.

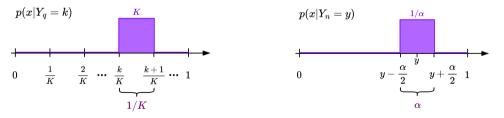
³E. Ozyilkan, J. Balle, and E. Erkip, "Neural distributed compressor discovers binning," IEEE Journal on Selected Areas in Information Theory, 2024.

Source and Side Information

- $X \sim \text{Unif}([0,1])$ and L_1 distance $d(x, \hat{x}) = |x \hat{x}|$.
 - The results are valid for any $r^{\rm th}$ power distortion.
- Two different SI settings:

Quantized: $Y_q = \lfloor KX \rfloor / K$ for some integer $K \ge 1$.

2 Noisy: $Y_n = X + Z \pmod{1}$ where Z is distributed uniformly on $[-\alpha/2, \alpha/2]$.



• Given Y, X is distributed uniformly on a smaller set. Size 1/K or α .

Source and Side Information

- Quantized SI, Y_q is a function of X so the encoder also has access to it.
 - **(**) For Y_q we consider the conditional model.
 - 2 Y_q is a coarse quantized version of X.
- Noisy SI, Y_n is not available at the encoder because of the independent noise.

Goals

- For Y_q : Characterize conditional entropy distortion function $H^q_C(\Delta)$
- **2** For Y_n : Characterize entropy-distortion function with side information $H^n_{SI}(\Delta)$

Optimal ECSQ for Uniform Source

Point-to-point entropy-distortion function¹

For $X \sim \text{Unif}([0, 1])$ and L_1 distortion metric $d(x, \hat{x}) = |x - \hat{x}|$. The entropy-distortion function is given by:

$$U(\Delta) = \begin{cases} -\lfloor 1/p \rfloor p \log p - q \log q, & 0 < \Delta < 1/4\\ 0, & \Delta \ge 1/4 \end{cases}$$

where $q = (1 - \lfloor 1/p \rfloor p)$ and $p \in (0,1)$ is the unique solution to

$$\lfloor 1/p \rfloor p^2 + q^2 = 4\Delta$$

• Achieved by quantizing X with biuniform intervals: $\lfloor 1/p \rfloor$ intervals of size p and one of size $q=(1-\lfloor \frac{1}{p} \rfloor p)$

¹A. Gyorgy and T. Linder, "Optimal entropy-constrained scalar quantization of a uniform source," IEEE Transactions on Information Theory, 2000.

Quantized Side Information: Characterization

Quantized SI: $Y_q = \lfloor KX \rfloor / K$, coarsely quantized X.

Quantized SI Conditional Entropy-Distortion Function

Consider $X \sim \text{Unif}([0,1])$ source and side information $Y_q = \lfloor KX \rfloor / K$ for some integer $K \ge 1$. The conditional entropy-distortion function is given by

$$\begin{split} H^q_C(\Delta) &= \min_{\{\Delta_k\}_{k=1}^K} \; \frac{1}{K} \sum_{k=1}^K U(K\Delta_k) \\ \text{s.t.} \; \; \frac{1}{K} \sum_{k=1}^K \Delta_k \leq \Delta, \\ \Delta_k \geq 0 \text{ for all } k \in \{1, \dots, K\} \end{split}$$

Quantized Side Information: Bounds

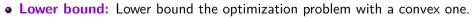
- The optimization problem is non-convex.
- We present simpler lower and upper bounds.

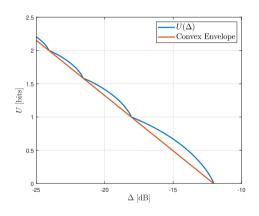
The lower and upper bounds to conditional entropy distortion function:

 $\breve{U}(K\Delta) \le H^q_C(\Delta) \le U(K\Delta)$

where $\breve{U}(\cdot)$ is the convex envelope of $U(\cdot)$

• Upper bound: Set $\Delta_k = \Delta$ for all k.





Noisy Side Information: Converse

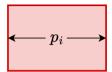
Noisy SI: $Y_n = X + Z \pmod{1}$ where Z is distributed uniformly on $[-\alpha/2, \alpha/2]$.

Lower Bound to the Entropy-Distortion Function with Noisy SI For $X \sim \text{Unif}(0,1)$ and $Y_n = X + Z \pmod{1}$ with $Z \sim \text{Unif}(\alpha/2, \alpha/2)$ the entropy distortion function is lower bounded as:

 $H^n_{SI}(\Delta) \ge \breve{U}(\Delta/\alpha)$

- Genie-aided lower-bound: We assume Y_n is also available at the encoder.
- Similar to the quantized case, we can obtain a lower bound in terms of the point-to-point entropy-distortion function.

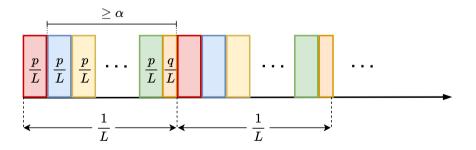
Noisy Side Information: Achievability



🕴 NYU

Noisy Side Information: Achievability

- Similar to point-to-point case, we choose biuniform p_i: All but one encoding indices have size p, remaining one has size q = 1 ⌊1/p⌋p.
- Each is split into L subintervals, placed at least α apart.



17 / 20

Noisy Side Information: Achievability

Upper Bound to the Entropy-Distortion Function with Noisy SI

For $X \sim \text{Unif}(0,1)$ and $Y_n = X + Z \pmod{1}$ with $Z \sim \text{Unif}(\alpha/2, \alpha/2)$ the entropy distortion function is upper bounded as:

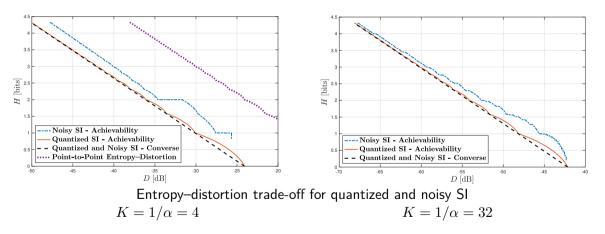
 $H_{SI}(\Delta) \le -\lfloor 1/p \rfloor p \log p - q \log q$

where $q = (1 - \lfloor \frac{1}{p} \rfloor p)$ and $p \in (0, 1 - \alpha)$ is the solution to

$$egin{aligned} &4\Delta = \left\lfloor rac{1}{p}
ight
vert \left(p\left(rac{p}{L}\wedgelpha
ight) - rac{L}{4lpha}\left(rac{p}{L}\wedgelpha
ight)^3
ight) \ &+ \left(q\left(rac{q}{L}\wedgelpha
ight) - rac{L}{4lpha}\left(rac{q}{L}\wedgelpha
ight)^3
ight) \end{aligned}$$

with $L = \lfloor (1-p)/\alpha \rfloor$ and $(a \land b) = \min(a, b)$.

Illustrations of the Results



Conclusions & Future Work

- We investigated a one-shot Wyner-Ziv problem, i.e. entropy-distortion trade-off with SI, for a uniform source with two SI models.
- We presented upper and lower bounds for the entropy-distortion functions and showed that they get tighter at higher rates.

Future work:

- Complex sources, general side information.
- High rate regime analysis where our achievabilities are close to optimal.