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Introduction

Distributed Compression

Distributed sensor network such as a
distributed camera array.

Correlated observations transmitted to
a central processing unit.

How can the sensors exploit this
correlation to send their data
efficiently?
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Introduction

Compression with Side Information

Encoder Decoder
Rate Distortion Function

R(∆) = min I(X;U)− I(Y ;U)

where minimization is over all
p(u|x) and g(U, Y ) = X̂ such that
E[d(X, X̂)] ≤ D.

Special case by Wyner and Ziv (1976):

Compress Xn under some distortion constraint.

Correlated side information is available only at the decoder:

They characterize the rate-distortion trade-off in the asymptotic setting.

Asymptotic methods do not directly apply to one-shot!
K. Ulger One-Shot Wyner–Ziv Compression of a Uniform Source 7/10/2024 2 / 20



Introduction

One-Shot Compression with Side Information
Encoder

(Quantizer, lossy)
Entropy Coder

(Lossless)
Decoder

Encoder
(Quantizer, lossy)

Entropy Coder
(Lossless)

Decoder

Popular approach for point-to-point (no side information) setting.
Quantizer (encoder) followed by an entropy coder (lossless, variable length such
as Huffman, Arithmetic coding etc.).
The rate is determined by the entropy of the quantized source hence this scheme
is called: Entropy Constrained Scalar Quantization (ECSQ)
We need to consider side information (SI) when designing the quantizer.
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Introduction

Example: JPEG

Classical image compression: JPEG

DCT Quantizer

Entropy
Coder

Inverse
DCT

Lossy

Lossless

Also popular method for learned compressors.

In our problem, we have to include the side information!
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ECSQ with Side Information

ECSQ with Side Information

Encoder
(Quantizer, lossy)

Entropy Coder
(Lossless)

Decoder

Source X, side information Y and distortion metric d(x, x̂).

Encoder f : X → N, decoder g : N×Y → X̂ .

The entropy and distortion of this encoder-decoder pair with X̂ = g(f(X), Y ):

H(f)= −
∑
i

P[f(X) = i] log(P[f(X) = i])

DSI(f, g)= E[d(X, X̂)]
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ECSQ with Side Information

Side Information Entropy–Distortion Functions

Encoder
(Quantizer, lossy)

Entropy Coder
(Lossless)

Decoder

Entropy-distortion function with SI is given by:

HSI(∆) = inf
f

H(f)

Infimum is taken over all encoders f such that there exists a decoder g with
DSI(f, g) ≤ ∆.
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ECSQ with Side Information

Conditional ECSQ
Encoder

(Quantizer, lossy)
Entropy Coder

(Lossless)
Decoder

Consider the case where Y is also available at the encoder. We refer to this case
as conditional ECSQ.
Encoder f :X×Y → N, decoder g :N×Y → X̂ .
The conditional entropy and distortion of (f, g) with X̂ = g(f(X,Y ), Y ):

H(f |Y ) = E
[
−
∑
i

P[f(X) = i|Y = y] log(P[f(X) = i|Y = y])

]
DC(f, g)= E[d(X, X̂)]
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ECSQ with Side Information

Conditional Entropy–Distortion Function
Encoder

(Quantizer, lossy)
Entropy Coder

(Lossless)
Decoder

Similar to the previous case, we define the conditional entropy-distortion
function as:

HC(∆) = inf
f

H(f |Y )

The infimum is taken over all encoders f such that there exists a decoder g with
DC(f, g) ≤ ∆.
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ECSQ with Side Information

Our Goal

We wish to characterize HSI(∆) and HC(∆).

We consider a uniform source on the unit interval [0, 1].

Motivation

Recent interest in bench-marking performance of neural compressors on processes
generated by uniform sources1,2.

Emergence of neural compressors in decoder-only side information settings3.

Even without SI, closed form expressions are only known for a limited source
distributions.

1A. B. Wagner and J. Balle, "Neural networks optimally compress the sawbridge," in 2021 Data Compression Conference (DCC). IEEE, 2021.
2S. Bhadane, A. B. Wagner, and J. Balle, "Do neural networks compress manifolds optimally?" in 2022 IEEE Information Theory Workshop

(ITW). IEEE, 2022.
3E. Ozyilkan, J. Balle, and E. Erkip, "Neural distributed compressor discovers binning," IEEE Journal on Selected Areas in Information Theory,

2024.
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ECSQ with Side Information

Source and Side Information
X ∼ Unif([0, 1]) and L1 distance d(x, x̂) = |x− x̂|.

The results are valid for any rth power distortion.

Two different SI settings:
1 Quantized: Yq = ⌊KX⌋/K for some integer K ≥ 1.
2 Noisy: Yn = X + Z (mod 1) where Z is distributed uniformly on [−α/2, α/2].

Given Y , X is distributed uniformly on a smaller set. Size 1/K or α.
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ECSQ with Side Information

Source and Side Information

Quantized SI, Yq is a function of X so the encoder also has access to it.
1 For Yq we consider the conditional model.
2 Yq is a coarse quantized version of X.

Noisy SI, Yn is not available at the encoder because of the independent noise.

Goals
1 For Yq: Characterize conditional entropy distortion function Hq

C(∆)

2 For Yn: Characterize entropy-distortion function with side information Hn
SI(∆)
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ECSQ with Side Information

Optimal ECSQ for Uniform Source

Point-to-point entropy-distortion function1

For X ∼ Unif([0, 1]) and L1 distortion metric d(x, x̂) = |x− x̂|. The entropy-distortion
function is given by:

U(∆) =

{
−⌊1/p⌋p log p− q log q, 0 < ∆ < 1/4

0, ∆ ≥ 1/4

where q = (1− ⌊1/p⌋p) and p ∈ (0, 1) is the unique solution to

⌊1/p⌋p2 + q2 = 4∆.

Achieved by quantizing X with biuniform intervals: ⌊1/p⌋ intervals of size p and
one of size q = (1−

⌊
1
p

⌋
p)

1A. Gyorgy and T. Linder, "Optimal entropy-constrained scalar quantization of a uniform source," IEEE Transactions on Information Theory, 2000.
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Results

Quantized Side Information: Characterization

Quantized SI: Yq = ⌊KX⌋/K, coarsely quantized X.

Quantized SI Conditional Entropy-Distortion Function
Consider X ∼ Unif([0, 1]) source and side information Yq = ⌊KX⌋/K for some integer
K ≥ 1. The conditional entropy–distortion function is given by

Hq
C(∆) = min

{∆k}Kk=1

1

K

K∑
k=1

U(K∆k)

s.t. 1

K

K∑
k=1

∆k ≤ ∆,

∆k ≥ 0 for all k ∈ {1, . . . ,K}
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Results

Quantized Side Information: Bounds

The optimization problem is
non-convex.

We present simpler lower and upper
bounds.

The lower and upper bounds to conditional
entropy distortion function:

Ŭ(K∆) ≤ Hq
C(∆) ≤ U(K∆)

where Ŭ(·) is the convex envelope of U(·) -25 -20 -15 -10

0

0.5

1

1.5

2

2.5

Upper bound: Set ∆k = ∆ for all k.
Lower bound: Lower bound the optimization problem with a convex one.
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Results

Noisy Side Information: Converse

Noisy SI: Yn = X + Z (mod 1) where Z is distributed uniformly on [−α/2, α/2].

Lower Bound to the Entropy-Distortion Function with Noisy SI
For X ∼ Unif(0, 1) and Yn = X + Z (mod 1) with Z ∼ Unif(α/2, α/2) the entropy
distortion function is lower bounded as:

Hn
SI(∆) ≥ Ŭ(∆/α)

Genie-aided lower-bound: We assume Yn is also available at the encoder.
Similar to the quantized case, we can obtain a lower bound in terms of the
point-to-point entropy-distortion function.
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Results

Noisy Side Information: Achievability
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Results

Noisy Side Information: Achievability

Similar to point-to-point case, we choose biuniform pi: All but one encoding
indices have size p, remaining one has size q = 1− ⌊1/p⌋p.
Each is split into L subintervals, placed at least α apart.
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Results

Noisy Side Information: Achievability

Upper Bound to the Entropy-Distortion Function with Noisy SI
For X ∼ Unif(0, 1) and Yn = X + Z (mod 1) with Z ∼ Unif(α/2, α/2) the entropy
distortion function is upper bounded as:

HSI(∆) ≤ −⌊1/p⌋p log p− q log q

where q = (1−
⌊
1
p

⌋
p) and p ∈ (0, 1− α) is the solution to

4∆ =

⌊
1

p

⌋(
p
( p

L
∧ α

)
− L

4α

( p

L
∧ α

)3
)

+

(
q
( q

L
∧ α

)
− L

4α

( q

L
∧ α

)3
)

with L = ⌊(1− p)/α⌋ and (a ∧ b) = min(a, b).
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Results

Illustrations of the Results
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Entropy–distortion trade-off for quantized and noisy SI
K = 1/α = 4 K = 1/α = 32
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Results

Conclusions & Future Work

We investigated a one-shot Wyner–Ziv problem, i.e. entropy-distortion trade-off
with SI, for a uniform source with two SI models.

We presented upper and lower bounds for the entropy–distortion functions and
showed that they get tighter at higher rates.

Future work:

Complex sources, general side information.

High rate regime analysis where our achievabilities are close to optimal.
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